Ikbal Agah Ince

Ikbal Agah Ince

AgreenSkills session, year: 2nd session, 2013

Receiving laboratory: VIM, Molecular Virology and Immunology Research Unit Jouy-en-Josas, France

Country of origin : Netherlands




Mobility project

EpiFlu: Epigenetics of influenza virus infections

Understanding the epigenetic mechanisms in host-pathogen systems is a critical prerequisite to prediction and development of mitigation strategies for any disease. In this project, we propose to investigate the implication of epigenetic phenomena in influenza virus infection. During the first project phase, we will use in vitro and in vivo to evaluate whether the epigenetic status of infected cells and host cells is modulated during influenza infection. For this purpose, histone modifications such as acetylation and methylation, and DNA methylation will be analyzed during the course of infections. For histone modification quantifications, mass spectrometry analyses will be carried out for in vitro infections. For in vivo infection, chromatin immune precipitations and DNA microarray hybridizations will be performed to characterize modulation of the epigenetic status of the immune cells. During the second project phase, we will determine if epigenetic phenomena interfere with virus replication. Towards this end, epigenetic enzymes inhibitors (targeting histone deacetylase and DNA methyltransferase) will be used to quantify their effect on virus replication. These studies will be completed by using specific siRNA targeting these enzymes to inhibit their expression and quantify their effects on virus replication. Furthermore, cells knockout for two DNA methylases (DNMT1 and DNMT3b) will be used to determine their role in the virus cycle. Our third objective will be to determine whether epigenetic phenomena induced by infection could contribute to acquired protective immunity. For this purpose, adequate mouse infection models and epigenetic enzymes inhibitors will be used.

Biography & research interests

My specialty is on molecular virology, biochemistry and vector biology. From 2006, I have performed my research in collaboration with international scientific groups on interdisciplinary research fields, specifically in Turkey and The Netherlands. I obtained my PhD degree at 2012 from Wageningen University, The Netherlands on functional genomics of a model invertebrate iridovirus using well established Drosophila model system. I have a keen interest to be at the frontier of genomic research on the pathobiology of human viruses in this stage of my career. During my postgraduate research, I gained experience in genomics, transcriptomics, proteomics, infectomics and interactomics of large DNA viruses. I worked on temporal classification and mapping of viral transcripts as well as temporal proteomics in unique viral-host models to understand global pattern of DNA virus infection (infectomics) using Tsetse and Drosophila. With this regard, I have implemented an experimental Drosophila fly model system for a quantitative temporal proteomic approach; to identify proteins and pathways regulated in the host by viral infection e.g. immune response.

The main focus of my transcriptoproteomic studies is to identify essential host cell factors in virus infection to contribute to the development of novel intervention strategies for viral infections.

Currently, I am focusing to implement in silico approaches to delineate the complexity of microbiome-host interaction and unravel their impact on the microbial pathogenesis to provide the scientific basis for the development of novel bio-strategies and designing of bio-processes of products of a wide spectrum of interest in bio-industry.

Selected publications

* İkbal Agah İnce, Kadriye Özcan, Monique van Oers, Just M. Vlak. Temporal classification and mapping of nonpolyadenylated transcripts of an invertebrate iridovirus. Journal of General Virology, 94: 187-92, 2013

* Alfred W. Bronkhorst, Koen W. R. van Cleef, Nicolas Vodovar, İkbal Agah İnce, Hervé Blanc, Just M. Vlak, Maria-Carla Saleh and Ronald P. van Rij. The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. PNAS, 109: 3604–3613, 2012

 * Henry M. Kariithi, İkbal Agah İnce, Sjef Boeren, Adly Abd-Alla, Andrew G. Parker, Serap Aksoy, Just M. Vlak and Monique van Oers. The salivary secretome of the tsetse fly Glossina pallidipes (Diptera: Glossinidae) infected by salivary gland hypertrophy virus. PloS Neglected Tropical Diseases, 5: e1371. 2011

* İkbal Agah İnce, Sjef Boeren, Monique M. van Oers, Jacques J.M. Vervoort, Just M. Vlak. Proteomic analysis of Chilo iridescent virus particles. Virology, 405: 253-258, 2010



Website(s): http://www6.jouy.inra.fr/vim_eng/